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ABSTRACT

With growing interest in the application of research to problems
that arise in real-world contexts, 1ssues raised by consideration of
uncertain states and unreliable operators are recelving increased
attention in artificial intelligence research. In this paper, a model
i1s presented for dealing with such concerns. The model 1s a
probabilistic generalization of the familiar notion of problem space.
The specification of wuncertain states and unreliable operators is
discussed. Problem—-solving search wmethods are described. The need for
information gathering i1s established. Search methods are generalized to
produce tree-structured plans incorporatiang the wuse of such operators.

Several application domains for our model are discussed.

ii



CONTENTS

ABSTRACT . .
LIST OF ILLUSTRATIONS o« .
I INTRODUCTION -
I1 PROBLEM SOLVING . .

IIT INTRODUCING UNCERTAINTY . .

IV  REPRESENTING UNCERTAIN PROBLEM SPACES

v STATE DISUNITY AND PRAGMATIC FOCUSING

VI INFORMATION GATHERING .« e

VII PROBLEM SOLVING WITH INFORMATION GATHERING

VIII APPLICATIONS s .
IX  CONCLUSION . .
REFERENCES . .

111

ii

iv

11

18

22

32

38

41

42



10

11

12

13

14

15

ILLUSTRATIONS

Specification Schema for an Unreliable Operator U0 . .
Function APPLY, Which Applies Unreliable Operator UQ to
Uncertain State US and Returns the Resultant
Uncertain State (rus) v s e e e e e

Specification of a UPS for Random Ball Drawings . . .

Specification of a UPS for a Simple, Unreliable Block
Wo rld - - L] - L] L] - L] L] - -

Dealing with Implicit Uncertainty 1n State Descriptions

An Example Demonstrating the Need for Pragmatic Focusing
Introducing Information-Gathering Operator QCL . e .
Pragmatic Focusing in the UPSs of Figures 4 and 6 «

Specification Schema for an Imperfect Information-
Gathering Operator IIGO « & e s e .

Functions for Applying Imperfect Information-
Gathering Operators « e e s 2 e s .

Uncertain List Processing with Ymperfect
Information Gathering - e e 4 e s

An Imperfect IGO0 for the Uncertain Robotics Problem Space

Functions Determining a Best Plan from an Uncertain
State US L] L] - L] L - L - - - L]

A Function Determining a Best Plan Containing Given
Leaf LF . . . . . . . - - - .

A Function Determining the Set of Pragmatic States for a
(Globally) Given Uncertain Problem Space . .

iv

12

14

17

21

24

26

27

28

29

30

34

35

36






I INTRODUCTION

Until recently, most artificial intelligence research on problem
solving ignored 1ssues of state uncertainty and operator unreliability.
With a growing desire to apply research results in real-world contexts,
these toples have begun to recelve increased attention. Real-world
contexts present an inherent uncertainty stemming from several factors,
such as inadequate Interpretation of environmental information,
unreliable execution of plan actions, and the unforeseen interaction of
multiple agents. The spreading use of expert-system technology based on
inexact, probabilistic reasoning is one 1Indication of the current
interest 1in and future potential for real-world applications of

artificial intelligence.

This paper offers a theoretical framework for addressing issues of
problem solving under conditions of uncertain states and wunreliable
operators. The framework 1s a stralghtforward generalization of the
familiar state space model [l]. A forward-directed search algorithm
analogous to A* [17] 1s presented. The specification of unreliable
operators and the description of uncertain states are discussed. The
need for Informaticn-gathering operators to control state disunity and
provide pragmatic focusing is established; a representation for such
operators is proposed. A backward-directed search component 1s
introduced Eo assist in the planning of Information-gathering operators.
Aspects of our model of uncertain problem solving are compared with
Markov processes and utllity-based techniques of decislion analysis. The
paper concludes with a summary of results, suggestions regarding
applications, and a brief discussion of the outstanding issues in real-

world problem solving.



IT PROELEM SOLVING

A problem exists for an agent within a task environment when a
current situation does not satisfy all aspects of a desired situation.
The agent represents sitvations in the task environment by states.

Problem solving refers to an agent”™s activity in determining a plan

(e.g., a sequence of operators} that transforms one (current) state into
another (goal) state. The agent can then perform actions 1n the task
environment corresponding to operators of the plan to realize the
desired situation. The search for a solution is carried out within a

problem space [16]. A problem space (PS) consists of the following

components:

State Space: SS —— a set of possible states
Operators: 0 — a set of operators, o: S5 ——> S§
Current State: cs —— a distinguished state of SS
Goal Space: GS —— a distinguished subset of §S.

The current state represents the concurrent situation in the task

environment. The solution to a given problem is a sequence of operators

ol ... oK such that oK(...ol(cs)...) = gs, where gs is an element of GS.

States within a PS are modeled and manipulated by an agent in the
form of state descriptiouns. Two representational formalisms are
commonly used to describe states of §S. The two are formally
equivalent, but are usually manipulated differently; instances of both
appear in examples discussed below. One descrlbes a state by a set of
propositions (n-ary predicates) indicating properties and relations that
are true of the state. When this form of state description 1is used,
operators are of;en represented as sets of precondition, add and delete

propositions. The 1wmplicit meaning of this representation is that, if



the set of preconditions 1s satisfied by a given state description, then
the operator may be applied; a new state description 1s produced by
removing propositions of the delete set from the given state and forming
the union of the remainder with the add set. The second form of state
description that 1s frequently used is a set of attribute-value pairs.
For a state description, a mentioned attribute has the specified value
in the state(s) being represented. This form of state description can
be reduced to a vector of values with an implicit attribute name for
each vector position (as 1n a relational data base). Operator
preconditions are represented as constraints on attribute values;
effects are represented as functilons expressing new attribute values 1n

terms of given values.

By specifying ranges for predicate arguments or attribute values,
we determine a (superset of the) state space. The state space may be

further constrained by state axioms. State axioms describe allowable or

necessary relationships among value aspects of a state description. For
example, two attributes may have integer value ranges; a state axiom may
specify that in every allowable state one of the values must be greater
than twice the other. Another state axlom may indicate that a new
predicate or attribute value palr can be iInferred from others currently
in a state. For example, a blocks—world state axiom may assert that, if
block A is on B and B 1is above block C, then the proposition that A is

above C can be added to the state.

Glven either form of state and operator description in a PS5, there
exists a straightforward model of problem solving viewed as a process of
state space search. The process starts at the current state and applies
possible operators to resultant states until reaching a state in GS.

The following algorithm specifies this forward-directed search method:
Algorithm SOLVE(S$S,0,¢s,GS):

(1) Set FRINGE to { cs }.

(2) Select a state s in FRINGE.

(3) If [s in GS] then Retrieve Solution and Stop.

(4) Otherwise, Remove s from FRINGE and put it in OLD.
(5) Apply all possible operators in 0 to s producing NEW.

3



(6) Add each state in NEW that is not in FRINGE or OLD to
FRINGE.

{(7) Return to Step 2.

As an operator o is applied to state s, we assoclate with each new
state ns two values: a predecessor pred(ns), being equal to s, and a
preceding operator preop(ns), being equal to o. These allow
stralghtforward retrieval of a solution in Step 3. Several instances of
a given state may be produced (by differing operator sequences) during
problem—solving search; with each maintained instance, one (e.g., first
or least—cost) predecessor 1ls associated [17]. States i1n NEW that are
incorporated into the search tree are assoclated with state s as

successors(s).

The nondeterministic selection of a next state i1in Step 2 provides
opportunity for the use of heuristics to gulde the otherwise blind,
forward-directed search. One means of introducing heuristics 1s to
assoclate with each state in FRINGE the result of an evaluation function
applied to that state. A common form of evaluation function 1s
f(s) = c(s) + h(s) for s a state in FRINGE, where f maps § to a numeric
(integer or real) value [17]. The value of c(s) represents the best
(lowest) cost of a known sequence of operators reaching s from cs. The
value of h(s) represents an estimate of the cost to reach an element of
GS from s. Thus, f(g) represents an estimate of the cost of a solution
to the given problem, with the solution constrained to go through state
s. It is natural to select a next state s from FRINGE, which minimizes
this estimate. It has been proved that if this is done and h(s) is a
lower bound on the actual cost of reaching a state in GS from s, then
Algorithm SOLVE 1g guaranteed to find a minimum-cost solution to a given
problem if a solution 1is indeed possible [17]. Algorithm SOLVE under
these conditions is called Algorithm A*. The valued property of A¥,
that of always finding a minimum cost solution when a solution exists,
is called admissibility.




ITI INTRODUCING UNCERTAINTY

The preceding model of problem solving Is severely limited in its
applicability. Most lmportantly, it 1s not a sultable representation
for solving problems that occur in real-world task environments.
Several properties of the latter, enumerated below, make this conclusion
apparent:

* The environment is ongoing (prior to goal state

specification)

* A state only partially represents any environmental
sltuation

* There 18 1likely error 1n transduction of situational
information

* QOperator specifications are incomplete (i.e., have side
effects)

* Actions corresponding to operators are executed unreliably

* Other systems may affect the task environment.

All the above properties of real-world task environments indicate
that problem solving must deal with issues of I1mprecision and
uncertainty if it i1s to produce effective solutions for such contexts.
In the following discussion we shall propose extensions of the earlier
problem—solving model that take into account the existence of uncertain

states and unreliable operators.

Problem solving under conditions of uncertainty takes place within
an uncertain problem space. An wuncertain problem space (UPS) 1s

comprised of the following aspects:

State Space: S5 == a get of possible states

Possible States Space: PSS —— the set of sets of states 1in S8
(i.e., 2785)

Uncertain State Space: USS —— as PSS, assoclating probabilities
summing to 1.0 with component states of
an element of PSS

5



Unreliable Operators: UO ~— a set of operators, uo: USS ——> USS

Uncertain Current State: ucs —— a distinguished element of USS

Goal Space: GS —— a distinguished element of PSS

Solution Threshold: ST —— a number, 0 =< ST =< 1.

A problem specified in an uncertain problem space 1s an uncertain
problem. Assessment of the present situation in the task environment is
represented by ucs. As that environment is ongoing, a problem solver is
typlcally uncertain about those aspects of the present situation that
are relevant to achleving a new goal. GS 1s defined, as in the certain

case, to be a subset of the states in SS.

We 1initially define a solution to an uncertain problem to be a
sequence of unreliable operators uol ... uokK with
uoK(...uol(EEE)...)=ugs, such that the sum of the probabilities of
states 1in ugsg that are also in GS 1s greater than or equal to ST. With
each wuncertain state us, we assoclate a degree of goal space
satisfaction dsat(us) equal to the sum of the probabilities of component
states of us that are 1in GS (i.e., that satisfy goal space criteria).
Solving an uncertain problem consists of determining a sequence of
unreliable operators that produce an uncertain state us, such that
dsat{us) >= ST. The notion is that an uncertain problem is gsolved by a
sequence of unreliable operators that transforms an uncertain current
state Into ome of a set of pgoal states with some minimum (threshold)

probability.

An uncertain problem space represents an uncertaln situation as a
set of possible states having probability prob(s) assoclated with each
state 5 of that set. Thus, an uncertain state corresponds to a set of
representable "possible worlds,” with the likelihood that each of those
worlds is the actual world. An unreliable operator maps one uncertain
state to another. Note that an uncertain problem reduces to a certain
problem when ucs consists of one state of SS with probability 1.0, all
operators map a single state of S5 to another state of 85 with



probability 1.0 (i.e., they are reliable), and ST 1s equal to 1.0.
Throughout our discussions, we use probability in the sense of "best
estimate of likelihood™ and do not imply knowledge by the problem solver
as to actual probabilities. We do assume that probabllity estimates are

assigned consistently, i.e., sum to 1.0 for each uncertain state.

In a (certain) PS, an operator 1s applied only to states satisfying
its preconditions; for such states the operator produces its (desired)
effects. In a UPS, an unreliable operator must be applicable to
uncertain states containing some component states that satisfy and some
that do not satisfy its (desired) preconditions. An unreliable operator
must be defined as to its effects given any state in 5S5. This can be
done by specifying operators as sets of precondition-effects pairs such
that the precondition aspects partition the states of SS. For each
specified precondition aspect, a set of effects with assoclated
probabilities 1s defined. Figure 1 describes this framework for
specifying unreliable operators. Given uncertain state us, the
uncertain state resulting from the application of an unreliable operator
can be computed by combining the effects for each component state in us;
resultant component state probabilities reflect the 1likelihood of
effects and prior components in us. Figure 2 presents function APPLY,
which determines the uncertain state resulting from application of an |

unreliable operator to an uncertain state.

As specified, each operator description is equivalent to a finite-
state Markov process [12,13], expressed as mappings between state
descriptions rather than as transitions between states (in a matrix).
Application.of a sequence of such operators represents a discrete-time,
controllable Markov process. The process 1s controllable in that the
probabilistic state transition is determined by the selected operator.
Function APPLY describes a procedure for computing the next state
configuration of a controllable, unobserved Markov process. The process
is unobserved in that we assume no means for determining which of the
possible states actually exists before or after application of an

unreliable operator.



Uo = [ (pre, [ (eff, peff) ]) I,
where [ ... ] indicates a nonempty set of the enclosed elements,

such that
(1) pre and eff are state descriptions;

(ii1) peff 1is an effect probability, 0 =< peff =< 1.0;
(1ii) the set of preconditions pre partitions SS;

{iv) the sum of peff for given pre equals 1.0,

Assoclated are the following access functions:
pre(U0,1) :: the ith precondition of UQ;

eff(U0,1,3) :: the jth effect associated with the
ith precondition of UQ;

peff(U0,1i,3) :: the probability of that jth effect.

Figure 1 Specification Schema for an Unreliable QOperator UQ

function APPLY{US,UQ)
begin
Set rus to the empty set;
For each s in US
begin
Determine i such that s satisfies pre(U0,1);
For each j such that eff(U0,1,]) exists
begin
_Cenerate state ns, evaluating eff(U0,1,3j) in terms of s;
Set prob{(mns) to prob(s) * peff(U0,1,3);
If [ns = os in rus] then increment prob(os) by prob(mns)
else place ns in rus
end
end;
Return(rus)
end

Figure 2 Function APPLY, Which Applies Unreliable Operator U0 to
Uncertain State US and Returns the Resultant Uncertain State (rus)



Most optimization results in Markov control and decision analysis
rest upon the assumption of complete observabllity (as in [2]). These
results take the form of policies that speclify for each individual state
which operator 1s to be applied to maximize expected utility over either
an infinite or finite number of subsequent transitions. These results
assume a utllity functlon defined over the possible states. Approximate
solutions 1n the infinite case are expressed in terms of an iterative
(or recursive), convergent, policy adjustment process [5,12]. 1In the
finite case, an optimal pollcy for n state transitions iIs expressed
recursively 1in terms of optimal policies for n—1 transitions from all
states directly reachable from the initial state [12]. Such a result is
easily expressed, but Implies a complete search of all possible futures
to a given depth. Varilous techniques of dynamic programming, such as
branch and bound [24], have been proposed to reduce the exponentilal,
computational complexity. Similar results have been expressed for
partially observable processes [22]; the attempt 1s made to reduce the
complexity by partitioning the space of uncertain states into regions of
equal expected utility. These results appear to be extendable to the

totally unobserved case as well.

We are concerned here with a slightly different problem. Expressed
in the terminology of above results, we want to determine the least cost
of a sequence of transitions resulting in an wuncertain (unobserved)
state that satisfiles goal space criteria with probability greater than a
given solution threshold. Prilor research has discussed least-cost
operator selection policles for completely observed Mankov processes
[4]. A recent result addresses a related issue in a completely
observable context, that of minimizing the expected number transitions
to reach a certaln state from a given initial state [11}. Controls in
that case consisted of filters limiting the possible outcome states of a

transition.

We would like to determine heuristic methods that are applicable in
a UPS. Our model of the latter allows for the definition of USOLVE as a

straightforward generalization of the state space search method



presented as Algorithm SOLVE. The halting condition 1in Step 3 becomes
one of verifying satisfaction of the threshold condition required by ST
(i.e., dsat(us) >= ST). Values for successors, pred, and preop can be
associated with uncertaln states during search as 1in the certain case,
facilitating retrieval of the solution plan. Furthermore, there 1s an
analogous definition of a state evaluation function guaranteeing
admissibility of USOLVE. Given the definition of a suitable h function
in a PS, we can specify an evaluation functlon for uncertain states that
guarantees admissibility of USQLVE in the corresponding uncertain
problem space. For an uncertain state us in FRINGE, we define the
evaluation function uf(us) = uc(us) + uh(us). The value of uc(us) is
the sum of expected costs of applying operators on the path from ucs to
us, as In the certain case. Each unreliable operator definition must
assqciate costs with each possible transition. The expected cost of
applying an operator to an arbitrary uncertain state can then be
determined 1in a straightforward manner. We could define uh(gg) to be
min[h(s)] over component states of us; however, 1if dsat(us) > 0 then
uh(us) would equal 0. A better definition of uh would be the minimum of
max[h(s)], maximized over states s from subsets of component states of
us having combined probability greater than or equal to ST, where the
minimum is taken over all such sets. By either definition, uh(us) would
be less than the actual cost to reach an uncertain solution state. As

such, USOLVE would be admissible.

10



v REPRESENTING UNCERTAIN PROBLEM SFPACES

The definition of uncertain problem spaces glven above allows
stralghtforward generalization of our {(certain) notions of problem,
solution, and problem solving. However, several representational issues
remain to be considered. In this section we discuss the representation
of uncertain states,- using several examples to 1llustrate important

issues.

One Interesting class of uncertain problems consists of those often
studied by probability theorists. Although reflecting uncertain aspects
not of real-world contexts but of combinatorial spaces, these problems
are straightforwardly modeled by uncertain problem spaces. Figure 3
presents an example of an uncertain problem space modeling the task
environment for a class of problems concerned with the random drawing of
balls from an wurn that contains balls of two colors. The extracted
balls are placed in a box. A state represents the number of balls of
each color in both the urn and the box, as well as the color of the last
ball drawn. The action of randomly drawing a ball 1s directly
representable as an unreliable operator. The specification of DRAW
illustrates that the probabllities of effects assoclated with a given
precondition, can be variable, depending upon aspects of the state to
which the operator 1is being appllied. All that 1s required is local
consistencf in that the effect probabilities for any component state
must sum to 1.0. The example shows DRAW belng applied to an uncertain
current state 1n which no balls have yet been drawn. It i1s not known
whether the urn contalns 70 balls of one color and 30 of another or an
equal number of each color; however, the former is considered to be more
probable. If the goal state is the presence of one or more balls of
colorl in the box with ST equal to 0.60, then one application of DRAW
solves the problem; dsat(UCS5”) is equal to 0.62.

11



An element s of 55 1s a vector of the form (U1,U2,B1,B2,CL),

where Ul and U2 are the number of balls in the urn
of colorl and color?, respectively;

Bl and B2 are the same for the box;
CL is the color of the last ball drawn (0, if none).

PSS and USS are defined implicitly.

Figure 3{a) State Space S8

DRAW = { ( (ULl + U2 > 0) , {((U1-1,U2,B1+1,B2,1), U1l/(U1+U2)),
((U1,U2-1,B1,B2+1,2), U2/(U1+U2))})

( (Ul + U2 = 0) ’ {((0,0,51,32,0), 1'0)}) }

Figure 3(b) Specification of the Uncertain Operator DRAW

vcs = { ((79,30,0,0,0), 0.6), ((50,50,0,0,0), 0.4) } .

DRAW(UCS) = { ((69,30,1,0,1), 0.42), ((70,29,0,1,2), 0.18),
((49,50,1,0,1), 0.20), ((50,49,0,1,2), 0.20) } = UCS~

Figure 3(c) Application of DRAW to Uncertain Current State UCS

Figure 3 Specification of a UPS for Random Ball Drawings
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The primary motivation for considering uncertain problem spaces in
artificial intelligence derives from a desire to deal effectively with
real-world contexts. Figure 4 presents an example of an uncertain
problem space modeling a simple robotlcs task environment. The robot
operates in a world in which a block (or assembly part) c¢an be moved
about omn a tablétop. A position on the tabletop 1Is represented by a
palr (x,y) of integer coordinates. A state in the problem space
consists of a single proposition representing that (a distinguished
point of) the block is at (i.e., within an epsilon of) or near (i.e.,
within one prescribed unit of) a particular position. The parameterized
movement operator MOVE(xl,yl,x2,y2) 1is unreliable. If the bleck 1is
known to be at (xl,yl), the operator may drop the block as it picks it
up or may only place it mear (x2,y2). If the block is known only to be
near (xl1,yl), the operator may miss it altogether; this will definitely
happen when the block 1is not at or near (x1,yl). Figure 4(c)
demonstrates that the better our knowledge is as to the position of the
block, the more effective is the operator during problem—solving search.
If the goal is for the block to be at or near position (50,50) (i.e.,
¢s = { (AT B, 50, 50), (NEAR B, 50, 50) }), then dsat(URS) equals .815
while dsat(URS") only equals ,635,

As noted earlier, state spaces are modeled and manipulated as state
descriptions. A given state description may represent a set (i.e., more
than one) of states from SS. This implicit state uncertainty is
inherent in many state descriptions; actually, 1t has been common in
earlier certaln-case approaches to problem solving. In our block
example, the predicate NEAR introduces one form of implicit state
uncertainty. Belng equivalent to a disjunction of other, more specific
propositions, an 1instance of NEAR represents a set of possible states.
Such uncertainty can occur 1n attribute value state representations if a
general value 1s defined for a given attribute that denotes several
values in the range of that attribute. Implicit state uncertainty may
algo be introduced by incomplete state specificatlons. In the attribute
value formalization, only a subset of attributes may be given values; an

unspecified (i.e., “don”t care") attribute may take on any value in its

13



An element of 85 is of the form

(AT B, X, Y) or (NEAR B, X, Y), for 0 =< X,¥Y =< 100,
where
(NEAR B, X, Y) == (AT B, X, Y-1) or
(AT B, X, Y+1) or
(AT B, X-1, ¥) or
(AT B, X+1, Y) .

PSS and USS are defined implicitly.

Figure 4(a) State Space SS

MOVE(x1,yl,x2,y2) == { ( (AT B, xl, yl) , { ((AT B, x2, y2), 0.85)
((NEAR B, x2, y2), 0.10)
((NEAR B, x1, yl), 0.05)})
( (NEAR B, x1, y1) , { ((AT B, x2, y2), 0.45)
((NEAR B, x2, ¥2), 0.05)
((NEAR B) 'KI, Yl), '5)})
(OTHERWISE, NO CHANGE) }

Figure 4(b) Specification of Unreliable Operator MOVE

ucs = { (AT B, 20, 20), 0.7), (NEAR B, 20, 20), 0.3) }

MOVE(20,20,50,50)
Ucs » { ((AT B, 50, 50), 0.73)
((NEAR B, 50, 50), 0.085),
((NEAR B, 20, 20), 0.185) } = URS

ucs” = { ((AT B, 20, 20), 0.3), ((NEAR B, 20, 20), 0.7) }

MOVE(20, 20, 50, 50)
ucs” » {((AT B, 50, 50), 0.57)
((NEAR B, 50, 50), 0.065)
( (NEAR B, 20, 20), 0.365) } = URS~

Figure 4(c) Application of MOVE to a Pair of Uncertain States

Figure 4 Specification of a UPS for a Simple, Unreliable Block World
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range consistent with state axloms assoclated with the state space.
Similarly, in a proposition—-based state space, certain properties or
relations may not be specified. When state descriptions are allowed to
indicate aspects that are not true of the states they represent, large
uncertain states can be specified by relatively few disallowed attribute

values or negated propositions.

Implicit state uncertainty provides economy in specifying an
uncertain problem space to USOLVE and in carrying out problem solving
search by USOLVE. However, 1t does raise several difficulties with
regard to iIntersecting state descriptions. Within a given uncertain
state, 1t is desirable to have disjoint component state descriptions; in
fact, all definitions and algorithms discussed thus far in our paper
assume this property of uncertain states. For example, if the
probabilities of component state descriptions are to sum to 1.0, the
components must be disjoint. Even if we require that ucs be specified
as a set of disjoint state descriptions, application of an unreliable
operator still may require USOLVE to consider subsets of the Ilmplicit
set of states assoclated with a given component state description when
matching preconditions or computing effects. One component may satisfy
gseveral precondition partitions; application of an operator may cause
intersecting components to be produced in the resultant state. In these
cases, USOLVE must expand the component state to establish a set of
gstate descriptions at the required level of representational detail and
agsign probabilities to the resultant, more specific components. State
axioms will be used to select allowable component states. Probabilities
are assigned according to the implicit relative cardinalities of the new
components, the probabllities of original components, and any relative-—

probability axioms that have been specified. Relative-probability

axloms 1indicate a priorl relative 1likelihoods among value aspects of
allowable sets of states. If no relative-probability axioms have been

specified for a given aspect, a uniform distribution is assumed.

Figure 5 illustrates these mnotions, applying new instances of MOVE
in the UPS described in Figure 4. Consider applying MOVE(21,20,50,50)
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to the uncertain state UCS of Figure 4(c). Attempts to match
preconditions of the operator cause the state (NEAR B, 20, 20) to be
expanded. Assuming no relative-probabllity axioms have been specified,
a uniform distribution of implicit states results in the precondition
(AT B, 21, 20) being matched by a component state with probability
0.075. Precondition (NEAR B, 21, 20) 1s matched by components with
probability equal to 0.7, being equivalent in this case to (AT B, 20,
20). The other 1mplicit states represented by the instance of NEAR are
states not affected by MOVE. The resultant uncertain state 1s shown in
Figure 5(a). Two state descriptions intersect 1f theilr implicit state
sets have states in common. When the effects of an unrellable operator
are evaluated, intersecting component states may be produced. Figure 5
presents an example of this phenomenon, showlng MOVE(20,20,21,20), as
applied to UCS of Figure 4(c). The resultant uncertain state includes
two intersecting components: (AT B, 21, 20) and (NEAR B, 20, 20). The
implicit states represented by NEAR must be explicitly represented. If
we again assume uniform distributlon of probabilitles, Figure 5(b)
depicts the uncertain state produced by this instance of MOVE.

The use of state descriptlions makes it possible to encourage in the
specification of wuncertain problem spaces and the representation of
uncertain states durlng problem solving. However, the concomitant
implicit state uncertainty does necessitate operations that can detect
and 1solate intersecting components and reestablish a disjoint uncertain
state at a level of specificlty required for operator application. In
function APPLY presented as Figure 2, an effect expansion procedure must
be activated just prior to returning uncertain-state rus. Precondition
expansion may be required when an attempt is made to ascertain the
precondition satigfied by a given component state description; a
component must be expanded so that each resultant component satisfles

one and only one precondition.
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ucs == { ((AT B, 20, 20), 0.7), ((AT B, 19, 20), 0.075),
((AT B, 21, 20), 0.075), ((AT B, 20, 19), 0.075)
((AT B, 20, 21), 0.075) }

MOVE(21,20,50,50)
ucs » { ((AT B, 50, 50), 0.379)
((NEAR B, 50, 50), 0.043)
((NEAR B, 21, 20), 0.353)
((AT B, 19, 20), 0.075)
((AT B, 20, 21), 0.075)
((AT B, 20, 19), 0.075) }

Figure 5(a) Dealing with Implicit Uncertainty in State Descriptions

MOVE(20,20,21,20)
ucs » { ((AT B, 21, 20), 0.73)
((NEAR B, 21, 20), 0.085)
((NEAR B, 20, 20), 0.185) } = US

Us == { ((AT B, 21, 20), 0.777), ((NEAR B, 21, 20), 0.085)

((A
((AT B, 19, 20), 0.046), ((AT B, 20, 21), 0.046)
((AT B, 20, 19), 0,046) }

Figure 5(b) Applying MOVE to UCS of Figure 4 with Effect Expansion

Figure 5 Dealing with Implicit Uncertainty in State Descriptions
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Y STATE DISUNITY AND PRAGMATIC FOCUSING

Now that the representation of uncertain problem spaces has been
discussed, attentlion can be directed to issues of problem solving 1in
such problem spaces. In this section we respond to a critical question
concerning uncertain problem solving: can uncertain problems having high
solution thresholds be solved? This obviously depends on ucs and the
reliability properties of avallable operators. One must realize that
uncertainty 1s compounded by application of unreliable operators. 1In
the medel thus far oproposed, uncertaln states are mapped to other
uncertaln states by unreliable operators that could normally be expected
to introduce even greater uncertainty. Execution of USOLVE in the UPS
of Flgure 3 can determine a minimum~draw solution for any problem
requiring k or more balls of either color to be In the box with any
desired ST (for any k less than or equal to 30). Formulation of a plan
guaranteeing exactly k balls of elther color to be in the box is another
story. As DRAW 1s applied repeatedly, the unreliability of the operator
leads to greater disunity (increasing entropy) in resultant uncertain
states. The 1level of disunity reflects the proliferation of component
states 1in an uncertain state and the fallure of any one component to
acqulre a high probability. In our example, it wlll never be more
likely that exactly one ball of colorl is in the box than it is after
the first DRAW; after two DRAWs the probability is reduced to near 0.40.
In general, it may remain possible to solve problems having low solution
thresholds or large goal spaces (e.g., that allow a wide range of values
on goal attributes) after a sequence of unrellable operators has been
applied. It may be expected to become increasingly difficult, if not
impossible, to solve uncertaln problems having reasonably constrained
goal spaces with high solutlon thresholds when applicatlion of several

unreliable operators 1s required.
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The process of solving uncertain problems should be sensitive to
the degree of disunity in the uncertain states considered during the
search for a solution. As such, the following measure of disunity is
proposed. Let the disunity of an uncertain state us, disu(us), be equal
to one less than the sum of i*prob(si) for 1=<i{=k, where us is composed
of states sl,...,sk such that prob(§l)>=prob(§£)>=...>=prob(EE). This
measure of disunity has the following suitable properties: disu(us) is
ninimized (i.e. equals 0) when us consists of a single state of $S;
uncertain states with fewer component states tend to have lower measures
of disunity; for uncertain states having the same number of components,
the more equal the probabilities of those components, the higher 1s the
measure of disunity; disu(us) is maximized (i.e., equals (k=-1)/2) for us
having k components when those components are equally probable. This
measure of disunity is one less than the expected number of component
states considered by a search for a component matching the task
environment, given that the components are considered sequentially in
order of decreasing probability [14]. When disu(us) equals O, us is
sald to be a certain state. The disunity measure should be evaluated in
terms of states, not state descriptions, if it is to be totally correct—
—and possibly at the most specific level of state description currently
required, 1f it 1s to be most meaningful. The entropy [21] of an
uncertain state us, equaling the sum of =-i*log(prob(si)) with
probabilities of components ordered as above, has properties similar to

disu(gg) and could be used as a measure of disunity as well.

Algorithm USOLVE could consider the value of disu(us) when
selecting a next state. A selected uncertain state with a high level of
disunity need not always be developed immediately, only tested for its
degree of goal space satisfaction. During search, USOLVE may eventually
apply operators to such states. VWhat are needed are operators that can
control (i.e., reduce) the level of disunity 1in uncertain states.
USOLVE then could apply such operators to a selected state that has
unacceptably high disunity. However, even when disunity is kept at a
relatively low level, unfavorable circumstances can arise. Consider the

aspects of an abstract, uncertain problem space presented in Figure 6.
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Assume that only those aspects of the problem space specified there are
relevant to solving the given problem; aspects are specified directly in
terms of the names of states occurring in SS. The value of disu(ucs) is
only 0.3, indlcating that disunity 1s qulte low, approaching the wminimum
possible. Yet, as shown by Flgure 6(b), the goal state 53 can not be
satisfied to the degree required by ST. This 1is true even though
operators A and B are each capable of taking a different one of the two
component states of UCS to goal state S3 with probability greater than
that required by the solutlon  threshold ST. The ﬁrobabilities
assoclated with components of UCS do not allow elther operator to

achieve S3 with sufficient likelihood.

Not only must a solution plan control disunlty, it must increase
the probabilities of component states that can lead to high degrees of

satisfaction for states in GS. We assign the term pragmatic focusing to

actlvities that serve to 1increase the probabllities of component states
that satisfy preconditions of operators capable of reliably producing
gtates In a given goal space. In certain problem spaces, pragmatic
focusing corresponds to the satisfaction of subgoals that have been
generated by backward-directed, means—ends analysis [16]. What 1is
needed 1s a means of pragmatic focusing in uncertaln problem solving and

plan execution.
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88 = {81,82,83,S54,...};
PSS and USS are defined implicitly;

{ (51, {(53, 0.9), (s4, 0.1)}),
(52) {(531 0'1)) (84) 0'9)})!
(53! {(54: 1'0)})) (54; {(54: 1'0)})!
(OTHERWISE, {(S4, 1.0)}) }

]

vo = { A

=]
]

{ (s1, {(s3, 0.1), (54, 0.9)}),
(st {(53: 0-9): (SZ;’ 0‘1)}):
(533 {(Sl"’ 1'0)}): (841 {(54’ 1'0)})3
(OTHERWISE, {(S54, 1.0)}) }

ucs

{ (81, 0.7}, (52, 0.3) };

GS

{83}

ST 0.8.

Figure 6(a) Specification of the Uncertain Problem

{(s3, 0.66), (S4, 0.34)}

{(s3, 0.34), (S4, 0.66)}

Space

A “~\\‘*~f:f\\\\ﬁ‘ A,B
ucs {(s4, 1.05::)
f”’/”’;:;//’/'

Figure 6(b) Application of Operators A and B from UCS

Figure 6 An Example Demonstrating the Need for Pragmatic Focusing
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VI INFORMATION GATHERING

We have established the need for operators that can control state
disunity and provide pragmatic focusing 1in uncertain problem—solving.
The class of information—-gathering operators 1s relevant to both

capabilities. An informatlon-gathering operator (IGO) 1s one that can

determine state information representative of the prevailing situation
in the task environment when it is applied during plan executiom. 1In
this section we propose a representation for information-gathering
operators. Qur initial assumption 1s that informatlon-gathering
operators are perfect, i.e., that the result of an information-gathering
operator will be true of the task enviromment when that operator is
applied during plan executlon. Furthermore, we assume that the IGOs
attaln this performance regardless of the current state. Later 1mn this
section, we discuss a representation for imperfect information—-gathering
operators whose  performance 1s affected according to exlisting
conditions. In the next section, we describe search methods that
formulate solution plans 1incorporating the use of information-gathering

operators.

In the course of problem solving, planned application of an
information-gathering operator maps the one uncertaln state to which 1t
is applied ‘into several uncertaln states, one for each possible result
(answer) of the operator. Thus, a plan solving an uncertain problem
that employs information-gathering operators 1s not a simple list (or
sequence) simple sequence of operators, but a tree. Each possible
result of an information~gathering operator produces a corresponding
uncertain state, ellminating component states that are inconsistent with
the result-—-while adjusting the probabilities of consistent component
states according to Baye®s Rule [2]. We assume that the possible
results of an IGO0 partition of the state space SS.

22



With each result of an Iinformation—gathering operator we can
assoclate an a priori probability at planning time. That probability is
the sum of the probabilities of component states of the uncertaln state
to which the operator is applied that are consistent with the result.
With each uncertain state us, we assoclate a probability uprob(us) equal
to the product of the a prilorl probabilities of IGO results occurring
between us and ucs, or equal to 1.0 if no information-gathering operator
has been applied. This probability indicates the 1ikelihood that the
uncertain state will be on the path of the solution plan actually

followed at execution time.

Figure 7 returns to our example of Figure 3, in which balls are
drawn randomly from an urn and placed 1in a box. The Information-
gathering operator QCL, which can reliably determine the color of the
last ball drawn 1s introduced. The result of applying QCL to the state
UCS” produced by an initial draw is shown. This produces two uncertain
states, UCS”~ and UCS”"", corresponding to whether the first ball drawn
was colorl or color2. The following probabilities are assoclated with
the new uncertain stateé: uprob(UCS”™“) = 0,62 and uprob{(UCS”""") = 0.38.
Not only are some states of uncertain state UCS” eliminated from each of
the new uncertaln states, but the results of QCL cause modifications in
estimated probabilities as to the current urn situation (e.g., when
color2 is drawn, estimates that colorl is prevalent decrease in UCS™" 7).
This occurs as the probabilities of remaining states are normalized to
again sum to 1. These new probabilities correspond to the conditional
probabilities of each component state, given the assoclated result of
the inforﬁation-gathering operator. Applying QCL reduces the disunity
in the resultant uncertain states; disu(UCS”) = 1.14, while disu(UCS™ ")
= 0.32 and disu(UCS""") = 0.48. If we mnow apply DRAW to UCS™ 77,

-

producing UCS , the goal of having exactly one ball of colorl in the
box is satisfied by our overall plan with a probability of approximately
0.85 (= 0.62*%1 + 0.38%(0.34 + 0.26)). With QCL, goal spaces requiring
exactly k balls of either color can be satisfied with any ST for any k

less than or equal to 30.
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ucs™”

_» (((69,30,1,0,1), 0.68), ((49,50,1,0,1), 0.32)}
(1,0.62)

QCL(UCS”)

(2,0.38)
™S (((70,29,0,1,2), 0.48), ((50,49,0,1,2), 0.52)}

UCSJ -

Figure 7(a) Applying QCL to UCS” of Figure 3(c)

DRAW(UCS™"~) = {((69,29,1,1,1), 0.34), ((70,28,0,2,2), 0.14)
6)

((49,49,1,1,1), 0.26), ((50.48.0.2.2), 0.26)} = vcs~~*-

Figure 7(b) Applying DRAW to UCS™ "~

Figure 7 Introducing Information—-Gathering Operator QCL -

Perfect=information gathering operators expand the domain of
problems that can be solved with relatively high solution thresholds.
Our example above demonstrates this for the case in which there 1s only
one operator. In cases where several (or many) operators are available,
the importaﬁce of information gathering could be expected to increase.
Information gathering segments an uncertain state into subcases for
which the most appropriate operators can then be selected. The
resultant plans acquire the flavor of planning for contingencies. A
solution is a plan that covers enough of the possible contingencies with
sufficient reliability to guarantee goal space satisfaction to the

extent required by the solution threshold.
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Figure 8 demonstrates this ldea, applyling information—gathering
operators 1in the UPSs defined 1n Figures 4 and 6. Operator QXY can
determine where the block 1s located on the table within the robotics
task environment. Fipure 8(a) 1llustrates application of QXY to
uncertaln state UCS” of Figure 4(c). Note our assumption of equal
probabilities for the four positions represented by proposition NEAR, as
discussed earlier. The parameters of MOVE can now be adjusted for each
subcase to realize optlimal performance. Repeated application of QXY
followed by appropriately specified MOVEs In unsuccessful cases could
produce a certainty of £inal position greater than the 0.85 performance
bound of a single, optimally parameterized MOVE. Information—-gathering
operator QS1 is applied in the UPS defined in Figure 6. It can
determine whether the present situation 1s equivalent to state 51,
returning ¥ 1f 50 and otherwise N. With Q51, the poal state S3 can be
realized with probability 0.90 by an appropriate selection of operators,
as shown in the plan of Figure 8(b). Thils plan attalns the satisfaction
limit imposed by the reliabilities of available operators.

We Thave established several roles that information—gathering
operators perform in uncertain problem solving. In addition, we have
determined the effects of such operators upon that process. Now let us
consider imperfect IGOs (IIGOs) whose performance 1s dependent upon
conditions of the state In which they are applied. Figure 9 presents a
framework for specifying such an operator. Once again a set of
preconditions 1s defined that partitions the state space S$S; the set of
possible results also partitions S5S. For each precondition, a confusion
table among possible results for that precondition is described as a set
of triples (rl,x2,cprob). For a glven precondition, each triple
indicates by cprob -how likely IIGO is to produce result rl when the
current situation actually is consistent with r2. Figure 10 presents
two functions to be used i1n applylng an imperfect IGO0 to a given
uncertain state. Precondition and result expansion may be required in
both functions to ascertain the implicit aspects of a given component
state description that satlisfy a given precondition or are consistent

with a glven result. An Imperfect IGO could be applied by first
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((20,20), 0.3) + {((AT B, 20, 20), 1.0)}

((21,20), 0.175) » {((AT B, 21, 20), 1.0)}

QXY(UCs~) ((19,20), 0.175) » {((AT B, 19, 20), 1.0)}
Q:::::((20,21), 0.175) » {((AT B, 20, 21), 1.0)}
((20,19), 0.175) » {((aT B, 20, 19), 1.0)}

Figure 8(a) Applying QXY to UCS” in the UPS of Figure 4

A
/{(51: 1'0)} "—m’{(s-?'! 0‘9)5 (S(") 001)}
(Y, 0.7)
”
QS1(Ucs)
~N
(N, 0.3)
B
\\‘{(52, 1.0)} » {(53, 0.9), (S84, 0.1)}

Figure 8(b) Applying QS1 in the UPS of Figure 6

Figure 8 Pragmatic Focusing in the UPSs of Figures &4 and 6

identifying all the results that have positive probabilities, possibly
using function RESPROB and applicable pruning knowledge; function RESUS
could then be applied for each such result to determine its associlated

consequent uncertain state.

Figures 11 and 12 demonstrate the definition and application of
imperfect IGOs, 1llustrating certain of their properties. 1In the first
example, an uncertaln list-processing problem space 1s defined. A state
of 58 15 a list of letter elements A, B, or C. An instance UCS of an

uncertain state is presented, consisting of four elements of SS. The
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1160 = [ ( pre, [ (rl, r2, cprob) ] ) ],
where [ ... ] indicates a nonempty set of the enclosed elements,

such that
(1) pre is a state description;

(i1) the set of preconditions pre partitions SS;
{1ii) rl and r2 are two (possibly the same) results of IIGO;

(iv) cprob is a confusion probability, 0 =< eprob =< 1.0.

Associated are the functions:
pre(IIGO,1i) :: the ith precondition of I1I1GO;

cprob(II1G0,1,rl,r2) :: the probability that IIGO yields
result rl when the situation 1Is actually consistent

with r2, given precondition i; if (rl, r2, cprob) is not
specified, the corresponding cprob(IIGO,i,rl,r2) is 0.0.

The specified values of cprob are such that, for a given IIGO and its
ith precondition,

the sum of c¢prob(IIGO0,i,r,r2) = 1.0,
when summed over all results r,
for each possible result r2.

Figure 9 Specification Schema for an Imperfect
Information—-Gathering Operator IIGO

imperfect information—gathering operator Qlst is defined, which returns
as its result an indication as to the first element of the current list.
Its definition reflects the notion that A and B are similar and may be
confused; B and C also share common features and may be confused, but
less often. Figure 11(c) shows the consequent uncertaln states after
applying Qlst to UCS. Thie result can be compared with one that would
be produced by the corresponding perfect IGO. Such an operator would
return result A with probability 0.45, B with 0.30, and C with 0.25; the

uncertaln states assoclated with results B and C would actually be
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function RESPROB(IIGO, RES, US)
begin
Set rprob to 0;
For each possible result r do
begin
For each state s in US consistent with result r do
begin
Set pl to 1 such that s satisfies pre(IIGO0,1);
Set scprob to cprob(IIGO,pl,RES,r);
Set rprob to rprob + (scprob * prob(s))
end
end;
Return(rprob)
end

Figure 10(a) Functions for Applying Imperfect
Information—Gathering Operators

function RESUS(IIGO, RES, US)
begin
Set rprob to RESPROB(IIGO,RES,US);
Set nus to { };
Set uprob(nus) to rprob * uprob(US);
For each state s in US do
begin
Set r to result with which s is consistent;
Set pi to 1 such that s satisfies pre(IIGO,1i);
If [eprob(IIGO,pi,RES,r) > 0.0] then
begin
Set ns to a copy of state s3
Set prob(mns) to (prob(s) * cprob(IIGO,pi,RES,r)) / rprob;
Set nus to nus + { ns }
end
end;
Return(nus)
end

Figure 10(b) A Function Determining the Uncertain
State Associated with a Given Response

Figure 10 Functions for Applying Imperfect
Information-Gathering Operators

28



certain. With Qlst, these two uncertaln states contain all four
components; however, thelr disunity measures are 1less than 1.0 because

of the relatively low confusability of results.

Each state of S8 1s a finite list of capital letters : A, B, or C.

Uncertaln state UCS = { ({A B C), 0.15), ((A C B), 0.30),
((B C A), 0.30), ((C B A), 0.25) } .

Figure 11(a) State Space 5S and Uncertain State UCS

Qlst = { ( ANY STATE, { (A,A,0.88), (A,B,0.12)
(B,A,0.10), (B,B,0.85), (B,C,0.05)
(C,A,0.02), (C,B,0.03), (C,C,0.95) } ) }

Figure 11(b) Imperfect ICO Qlst that Retrieves
the First Element of a List

{((A B C), .305), ((A C B), 0.61),
(A, 0.432)-"” ({(B C A), .085) }

{8, 0.313) — {({(A B C), .045), ({(A C B), 0.09)
((B C A, .B15), ((c Cc a), 0.05) }

Qlst(UCS)

(c, 0.255)
TS {((a B C), .012), ((A C B), .023)
((8 ¢ &), .035). ({C C &), 0.93) }

Figure 11(c) Applying Qlst to UCS

Figure 11 TUncertain List Processing with
Imperfect Information Gathering
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meant to model a directable location sensor pointed at coordinates
(X,Y). If the block 1s at or near that location, the IGO0 returns the
correct location as its result. TIf it 1s not, QXY(X,Y) can locate the
block only at positions at or near its truellocation, with all such
results being equally 1likely. Figure 12(b) demonstrates application of
the operator to a given uncertain state. Of interest in the example 1is
that this one application of the operator 1is sufficient to exactly
determine the position of the block; the outcome states for all five
results at or mear (30,30) have (AT B, 30, 30) as theilr only consistent
component state. These equivalent outcomes could be collapsed to one
uncertain state. There will be more on this topic below as we turn our
attention to methods of problem solving with information-gathering

operators.
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VII PROBLEM SOLVING WITH INFORMATION GATHERING

We would like to describe state space search methods for uncertain
problem solving that allow dincorporation of informatlon—gathering
operators (IG0s) into solution plans. When 1t contains IGOs, a solution
plan 1s no longer a slmple sequence (of states and operators), but is
rather a tree originating at ucs (i.e., having ucs as 1its root) and
ending at a number of leaf states. Tree-structured plans present
several new difficulties that must be dealt with during forward—directed
search for a problem solution. One 1s how to extract a best plan, 1in
terms of degree of goal space satisfaction, starting at ucs from the
search tree that exists at any point during problem solving. In
general, this capabllity 1s required to decide whether an uncertain
problem has already been solved. A second 1s how to determine a best
plan from ucs in the current search tree that includes a given uncertain
state as a leaf. This would allow USQLVE to select an uncertain state
in FRINGE, determine a best plan having that state as a leaf, and apply

Step 3 as before.

Figure 13 presents a set of functions, headed by BESTPLAN, that
provides the first capabllity. BESTPLAN{(US) returns a pair of values:
the degree of goal space satisfaction and the set of leaf states
assoclated with a best plan within the current search tree having US as
its root. A best plan is either US itself or a plan through successors
of USs. Successors are represented as a list whose elements are either
individual uncertaln states or, when an IGO has been applied, a sublist
of consequent uncertain states. When a sublist 1s encountered, the
degrees of satisfaction for leaf states of best plans starting at each
element of the sublist must be combined. The degree of satisfaction
contributed by a leaf state 1f to an overall plan wmust be tempered by
the probability that 1f will be reached; thus, the contribution of 1f 1is
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equal to uprob(lf)*dsat(1lf). The degree of satisfaction of a plan is
simply the sum of the contributions of its leaves. A solution to an
uncertaln problem has been realized when the degree of satisfaction of
BESTPLAN(ucs) >= ST. If a minimum-expected-cost best plan is desired,
all that function BESTSUCPLAN needs to do additionally 1s to compare the
expected costs of equally satisfylng successor plans. BESTPLAN already
prefers a plan with a given uncertain state as a leaf 1f all plans
through 1ts successors do not improve the degree of goal space

satisfaction.

Figure 14 presents functlon BESTLEAFPLAN, which determines a best
plan within the current search tree originating at ucs and having a
given uncertaln—state LF as a leaf. Note that the backward search for
such a plan can halt when all iInformation—gathering operators between LF
and ucs have been encountered (i.e., the probabllity of the considered
uncertain state is 1.0). BESTLEAFPLAN wuses BESTPLAN and functions
employed by BESTPLAN. With BESTLEAFPLAN applied to the selected
uncertain state Iin Step 3, USOLVE has been generalized to accommodate
information gathering. BESTLEAFPLAN not only returns a leaf set
determining a best plan, but the plan”s degree of goal state
satisfaction as well. Thils degree of satisfaction can be compared with
ST; 1f above the threshold, the leaf set can be used to retrieve the

solution plan.

IGOs do not directly improve the degree of satisfaction of a best
plan, but rather map a single uncertain state into several new uncertain
states. As such, USOLVE would do well to limit their application to
those uncertain states having significantly high 1levels of disunity.
The threshold for applying IGOs would depend upon the solution threshold
ST in an 1indirect manner (1.e., the higher the ST, the lower the
disunity threshold for applying 1IGOs. USOLVE could also restrict the
number of IG0s applied to a selected uncertaln state or incorporate into
the search tree only those that significantly reduce the sum or maximum
of the disunity levels of consequent uncertain states. Optimal IGOs for

a glven uncertain state can be defined as those that minimize either the
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function BESTPLAN(US)

begin
Set usplan to (satisfaction: dsat(US) * uprob(US),

leaves: {us}y;
If [successors(US) = NIL] then Return(usplan);
Set sucplan to BESTSUCPLAN(successors(US));
If [satisfaction{suecplan) > satisfaction(usplan)]
then Return(sucplan)
else Return(usplan)
end

function BESTSUCPLAN(SLST)

begin
Set bstplan to EVALPLAN(first(SLST));

Set SLST to rest(SLST);
While [SLST <> NIL] do

begin
Set nxtplan to EVALPLAN(first(SLST));

If [satisfaction(nxtplan) > satisfaction(bstplan)]
then set bstplan to nxtplan;
Set SLST to rest(SLST)
end; -
Return(bstplan)
end

function EVALPLAN(SUC)

begin
If [SUC 15 a 1list]
then Return(EVALIGOPLAN(SUC))

else Return(BESTPLAN(SUC))
end

function EVALIGOPLAN(SUCS)

begin
Set tplan to (satisfaction: 0, leaves: {});

While [SUCS <> NIL] do
begin
Set nplan to BESTPLAN(first(SUCS));
Set tplan to COMBINE(tplan, nplan);
Set SUCS to rest(SUCS)
end;
Return{tplan)
end

function COMBINE(PL1l, PL2)

begin
Return(satisfaction: satisfaction(PL1l) + satisfaction(PL2),

leaves: leaves(PLl) + leaves(PL2))
end

Figure 13 Functions Determining a Best Plan from an Uncertain State US
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funetion BESTLEAFPLAN(LF)
begin
Set bstlfplan to (satisfactilon: dsat{(LF) #* uprob{LF),
leaves: { LF } )
While [ uprob(LF) < 1.0 ] do
begin
If [preop{(LF) 1s an IGO] then
begin
Set others to list of other states produced by preop(LF);
Set bstlfplan to COMBINE(EVALIGOPLAN{others), bstlfplan)
end;
Set LF to pred(LF)
end;
Return{bstlfplan)
end

Figure 14 A Function Determining a Best Plan Contalning Given Leaf LF

sum or the wmaximum of disunity levels associated with consequent
uncertain states. Thils approach to controlling the application of IGOs
eschews the notion that, after each unreliable operator 1s applied, as
much sensing as possible 1s done to best assess the resultant situation.
Rather, the approach described here tries to limit information gathering

to that necessary to realize an adequate solution plamn.

In the forward-directed search generated by USOLVE, i1nformation
gathering can be marshaled to control disunity; pragmatic focusing would
be primarily fortultous. What is needed 1s a backward-directed search
component generating precondition states from which a goal state can be
reached with probability greater than 8T. We refer to such states as

the set of pragmatic states. Sequences of one or more 1IGOs could be

applied to a selected uncertain state by USOLVE to determine whether a
significant percentage satisfles components of the set of pragmatic
states. Those contingencies can be considered solved, and eliminated
from further conslderation. Note that USOLVE could do this without a
backward-search component, the set of pragmatic states reducing to GS.
Figure 15 presents a function PRAGSTATES, which generates a subset of
the pragmatic states for a giliven UPS. PRAGSTATES returns only a subset

as a glven set of effects may map into more than one pragmatic state,

35



thus increasing the pragmatic probability of its precondition. With
each pragmatic state us we associate a pragmatic probability pprob(us),
a successor psuc{us) and successor operator psucop(us). The latter two
can be used to retrleve .a sufficiently reliable plan from that state
when encountered during problem solving. USOLVE could employ PRAGSTATES
as an 1Initlal step, the resultant backward search belng bounded by

interaction between ST and operator reliabilities.

function PRAGSTATES
begin
Set pstates to { }.
Set nstates to GS.
For each s In nstates, set pprob(s) to 1.0.
While [ nstates <> NIL ] do
begin .
Set us to element of nstates.
Set pstates to pstates + us.
For each operator uo with ith precondition and jth effect
such that us 1s conslstent with eff(uo,1,3)
begin
Set ns to (a regressed copy of) pre(uo,1);
Set pprob(ns) to peff(uo,i,j) * pprob(us);
If [ pprob{ns) >= ST ] then
begin
Set psuc(ns) to us;
Set psucop(ns) to uo;
Set nstates to nstates + ns
end
end
Set nstates to nstates — us
end;
Return(pstates)
end

Figure 15 A Function Determining the Set of Pragﬁatic States
for a (Globally) Given Uncertain Problem Space

Several heuristics for controlling problem—-solving search by USOLVE
have been mentioned. The equivalence of several uncertain states
assoclated with the different results of applying QXY(X,¥) in Figure 12

suggests a final heuristic. Within a given search tree, similar
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uncertain states may occur. Let the measure of similarity of two

uncertain states usl and us2, sim(usl, us?), equal 1.0 minus one-half

the sum of the absclute differences between probabllities of equivalent
components in wusl and wus2. Thus, 1dentical uncertain states have a
slmilarity measure of 1.0, while totally disjolnt uncertaln states have
a similarity of 0.0. A plan that 1s highly successful from one
uncertain state may be expected to be somewhat successful from other,
slmilar uncertaln states. The indexing of uncertain states according to
their most likely components could make the wuse of such a heuristic
feasible. With each uncertain state we can assoclate a best plan in the
current search tree. Such best plans can be maintained by a partial
traversal of uncertain states on the path back toward ucs whenever a new
leaf is generated during search. Then, when an uncertain state 1is

selected for development, best plans from similar states can be

considered as well as arbitrary operators.
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VIITI  APPLICATIONS

In this section we briefly outline three planning issues that can
benefit from application of our model. These are incremental planning,

planning in conflict situations, and planning with abstract operators.

The notion of a solution in wuncertain problem solving 1s a plan
that will produce a goal state with probabllity above a specified
solution threshold. In plans that employ information—-gathering
operators, we have seen that thils solution probabllity 1s not required
from each consequent state of an IG0. Therefore, during execution of a
solution plan, a problem solver may find itself at a consequent state
that happens to be a contingency for which an adequate plan has not been
developed. Thls situation prompts conslderation of replanning from the

current uncertain state. More formally stated, an lncremental planning

system can follow thls scenario: first, it determines a solution from
ucs, assoclating with each uncertain state us of the plan the degree of
satisfaction bestsat(us) of a bestplan from us; during plan execution,
whenever 1t arrives at a us such that bestsat(us) < ST, it replans by
solving the problem again with us as ues. According to this scenario,
the problem solver is always on a path to an uncertain leaf state ulf
having dsat(glg) >= S8T. Thus, when a leaf is reached and plan execution
1s completed, the probabllity that the current state is a goal state is

greater than or equal to ST.

The above scenario forces a problem—solving system to replan only
when 1t encounters a relatively unexpected contingency during plan
execution. Feldman and Sproull [8] discuss a similar perspective upon
real-world problem solving and offer a utllity-based approach to the
control of planning. In thelr model, probabilities are not directly
incorporated 1Into state and operator descriptions, but are represented

as parameters of the context. Incremental planning 1s also a central
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notlon behind recent, goal-based approaches to computer chess [25].
Conflict situations, Including game playing, appear to be natural
domains for application of uncertaln problem solving. The opponent move
generator can be modeled naturally in terms of unreliable operators.
The opponent has several possible move options, with selection
probabilities made dependent upon the prevailing game situatfon. In
most board games, a perfect IGO0 can be applied with respect to the
current board configuration after each move. This view of an opponent
vields a probabilistic game tree for analysis{2]. In most other
conflict situations, ranging £from games 1like bridge and poker to
business and military confrontations, Imperfect IGOs and uncertain
states are likewise prevalent [9]. If we assume that goal spaces and
solution thresholds for such contexts can be adequately specified, the
application of problem solving in uncertain problem spaces would be

appropriate.

Finally, research in artificial intelligence has shown the utility
of constructing plans at several levels of abstraction, both for
efficliency In planning and for comprehensibility of resultant plans

[18,19]. An abstract operator 1s one that has several possible

implementations in terms of actions within the real-world context. For
example, the acquisition of a tool may involve buying, borrowing, or
simply retrieving it. As such, an otherwise reliable, abstract operator
has wuncertaln side effects, depending upon which of the possible
implementations 1s selected at execution time. Maintaining execution
time flexibility in operator implementation can be important in dynamic,
real-world contexts. In cooperative problem solving, in which one agent
requests that another execute a glven operator, uncertainty as to its
implementation and to the resultant state, must be taken into account.
Uncertainty can be controlled in this case by providing (rather than
gathering) information to influence the other agent”s chofce of

implementation.

We can model abstract operators by a mixed <{(reliable and

unreliable} representation. Each abstract operator will have an intent
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and a side effect aspect. The intent is modeled as a reliable operator
with required preconditions and guaranteed effects. The side effect
aspect 1s modeled as an unreliable operator with precondition sets that
partition the states satisfying preconditions pf the operator”s intent;
for each precondition of the side effect aspect, there is a set of
possible side effects with assoclated probabilities reflecting the
likelihood of corresponding Implementations. To solve a problem, one
first solves it in the certain terms of operator intents, merely
carrying along side effect probabilities. Then one searches for
conflicts between side effects and the preconditions necessitated by
subsequent operator 1intents. Reference to a specified solution
threshold determines whether detected conflicts can be ignored or a plan
must be revised, possibly by the introduction of information-gathering

operators.

40



IX  CONCLUSION

As noted in the introduction, the artificial intelligence research
community has recently begun to consider a varlety of 1ssues assoclated
with real-world problem solving. These have Included the coordination
of multiple-goal satisfaction {6,15], cleaning up [6], cooperative
(distributed) problem solving [3,23], and even waiting as a productive
problem-solving activity [7].

We have examined an 1ssue here that underlies all aspects of real-
world problem solving, i.e., that of dealing with uncertaln states and
unreliable operators. We have described techniques for solving problems
in 1lights of such entitiles. Qur methodology provides for the
application of information—-gathering operators within plans. The use of
these operators yields tree-structured plans; algorithms are presented
that search for such plans. Several potentially useful heuristics are

described.

Our model is based on a probabilistic generalization of the notion
of problem space. However, probabilistic representations of uncertainty
do have their drawbacks [20]. For one, there 1is no adequate way to
represent ignorance; maximum entropy approaches do not truly capture the
notion of lack of knowledge. Other representations of uncertalnty, such
as fuzzy sets [26] and support-plausibility intervals [10,20], offer
alternative approaches to modeling the uncertainty inherent in real-
world problem solving. The 1mplementation and evaluation of these
approaches constitute a currently active area of artificial intelligence

research.
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